Word Representation Using A Deep Neural Network

Yunpeng Li
Faculty of Information
140 St George St
Toronto, ON M5S 3G6, Canada
yunpeng.li@mail.utoronto.ca

ABSTRACT

A growth in the number of applications that make use of
cognitive computing has increased the need for algorithms
that can parse and understand natural language. Most mod-
ern systems rely on machine learning algorithms that take
a large corpus of text as input and identify features of the
language in the input data. Deep learning is a recently-
developed type of machine learning that uses a network
with several layers (a deep network) to identify and process
features in a given data set automatically. In this paper,
we introduce a deep learning neural network model called
the Character-Morphology-Word network (CMW), to solve
the word embedding problem. We implemented our CMW
model and trained it on the Wikipedia corpus. We com-
pared our model against two past approaches in a number
of word-embedding tasks and found that, while the average
performance of our model is not as good as the past ap-
proaches, our model achieves comparable precision and, in
one task, our model outperforms these approaches. We also
used our model to generate random text and found that our
model produces words in the vocabulary and can produce
lexical-correct text. The results of our research indicate
that a deeper neural network architecture can be used to
represent words and ultimately, help solve related Natural
Language Processing (NLP) tasks.

CCS Concepts

eComputing methodologies — Natural language pro-
cessing; Information extraction; Neural networks;
Phonology / morphology;

Keywords

Word Embedding; Natural Language Processing; Recurrent
Neural Networks; Recursive Neural Networks

1. INTRODUCTION

Being able to represent the words of a language is an im-
portant task in NLP [50]. Word embedding is a word repre-
sentation method that maps words into a continuous space
where the similarity between words can be measured by their
Euclidean distance [50]. A good representation of words can
reduce the complexity of the language model by making use
Copyright (©2016 Yunpeng Li and Kelly Lyons. Permission to copy is hereby granted
provided the original copyright notice is reproduced in copies made.

CASCON 2016 October 31-November 2, 2016, Markham, Ontario,
Canada.

Kelly Lyons
Faculty of Information
140 St George St
Toronto, ON M5S 3G6, Canada
kelly.lyons@utoronto.ca

of the redundancy in natural languages to improve the per-
formance of NLP applications.

A key to word representation is to find the structures, or
features, of the words in a language. Letters form words,
words form sentences, and sentences express concepts and
meanings. The combinations of letters and words could be
vast. However, some underlying principles rule out most of
these combinations, making the distribution highly sparse.
For example, there are 263 = 17,576 possible combinations
for three-letter-words in English, but only 1,015 of them are
commonly used [14]. Similarly, in the formation of a sen-
tence, the number of actual meaningful sentences are far
less than the total number of possible combinations of En-
glish words. Just like identifying edges and texture helps in
recognizing images, automatically identifying the patterns
in words can help in understanding how the concepts form;
recognizing patterns in sentence structures can help in un-
derstanding how languages work.

Deep learning is a recently-developed technique that has
been applied to automatically detect features in images [33].
As an unsupervised auto-encoding method for feature ex-
traction, deep learning is a candidate method for solving the
word representation task [35]. It performs as an automatic
encoder to extract higher level patterns and features from
a given training data set. These features are generated sta-
tistically and can be automatically optimized according to
independency and representativeness, which is usually dif-
ficult or even impossible in manually-created hand-crafted
features.

Deep learning has been widely applied in the field of NLP
12, 4, 26, 27, 29, 30, 36, 47]. Traditional neural network lan-
guage models (NNLM) usually use word [2, 4, 26, 27, 29, 306]
or character level input [7, 30]. Traditional neural network
based word embedding models take words (tokens) as the
input [19, 42]. In this paper, we introduce a model called
the Character-Morphology-Word Network (CMW), that is
composed of two deep neural networks (a character-level net-
work and a word-level network) and a morphological layer in
between that uses information obtained from the character
level network to break words into stems. Our model cap-
tures character-level information in the spelling of words, a
feature that is ignored in more traditional models. Our goal
is to determine if our model can perform as well as or better
than more traditional word-level networks.

Using Theano [3, 6], we implemented our deep learning
algorithms and trained them on the Wikipedia corpus. We
evaluated our model by comparing its performance with two
approaches in Levy et al. [37]. The results shows that, al-

though the average performance of our model is not as good
as that in [37, 44], our model achieves comparable precision
in most tasks. In one task, our model even achieves even
better performance. We also used our model to generate
random text.

The rest of this thesis is organized as follows, in Section 2,
we present relevant literature. In Section 3, we describe our
CMW model and explain each of its components in detail.
In Section 4, we present the results of our evaluation and
conclude in Section 5.

2. LITERATURE REVIEW

In common NLP tasks such as Part-of-Speech (POS) tag-
ging and machine translation, words used to be treated as
atomic entities using a “one-hot representation” [11, 12, 42,
59] which regards different words as completely isolated items
and ignores the relations and similarity among them. How-
ever, due to the complex relationships among words such as
overlapping concepts, and variations in spelling and gram-
matical cases in real world languages, the one-hot represen-
tation is inefficient, and overlooks useful latent information
hidden in the structure of a language.

Word embedding is a word representation method which
maps words into dense vectors in a continuous space [36].
Word embedding can be used to find the syntactic and se-
mantic latent structure of a language. For example, if the
language model has been trained with a corpus containing
the sentence, “The cat is walking in the bedroom”, it should
also recognize the sentence “A dog was running in a room”
because “dog” and “cat”, “the” and “a”, “room” and “bed-
room” have similar semantic and grammatical roles [4]; that
is, they have similar word embedding vectors. Word em-
bedding can augment the existing NLP algorithms by con-
necting unseen words to known ones, by detecting common
behaviors between similar words, and by directly identifying
lexicon features. This is especially useful when the corpus is
not big enough to solve the data sparsity problem [1]. Word
embedding features have been successfully applied to Part-
of-Speech (POS) Tagging [32], Named Entity Recognition
(NER) [45] and parsing [15, 32, 58].

Current methods for word embedding include neural net-

works [43], dimensionality reduction on the word co-occurrence

matrix [36], and explicit representation in terms of the con-
text in which words appear [50]. The most popular meth-
ods and packages for word embedding are word2vec [42] and
GloVe [50]. These methods use a neural network language
model to find the representation of words in a continuous
vector space [4, 46, 47].

Traditional approaches take the context of the word that
appears in a sentence (often called the “bag of words” or
“BOW?”) as the input to the models. In the neural net-
work approaches [43, 50], a neural network is trained to
use the BOW to represent the word by predicting the miss-
ing word w; between two bags of words (previous BOW
Wi—ny Wi—n41," " ,Wi—1 and next BOW Wi41, Wi41,y """
This is called the Continuous Bag-of-Words model (CBOW)
[42]. The context is usually two bags of words of the same
length n. While increasing n gives a better performance, it
increases the complexity of the model dramatically and the
model becomes untrainable quickly. In matrix based mod-
els [36], the co-occurrence matrix is obtained for the words
in sentences, and the matrix is factorized. Again, matrix
factorization is a computationally intensive task which be-

7w7j+n)-

comes impractical with a large vocabulary. Moreover, these
models all take words as the input which makes it impossi-
ble to handle words that have not been seen in the training
examples.

In this research, we use deep neural networks to per-
form the word embedding task. Our character-morphology-
word (CMW) network is composed of two deep neural net-
works with different structures on character-level and word-
level. Our Character-Level Neural Network Language Model
(CLNNLM) is a Bidirectional Long Short-term Memory Net-
work (Bi-LSTM) and our Word-Level Neural Network Lan-
guage Model (WLNNLM) is a Tree-Structured Recursive
Neural Network (TRNN). The CLNNLM takes each charac-
ter in the words as input and produces the embedding of the
word. It uses Bi-LSTM to retain the letter order in words
so that stems can be correctly processed. The WLNNLM
uses the parsing tree of the sentence to combine the words
recursively and produce the embedding of the sentence. It
uses TRNN to represent long distance dependencies or dis-
continuities which occur when there is a separation between
a word or phrase and the word or phrase that it modifies
such as those that happen with wh- words (whom, what,
which, whose, etc.).

A multi-layer neural network includes an input layer, one
or more hidden layers, and an output layer with several neu-
rons in each layer [38]. Neurons of neighboring layers are
interconnected by weighted edges. The layers are parallelly
arranged in a hierarchy such that information can flow via
links between layers (and get processed) before being sent
to outputs [49]. Once trained, the weights of the links are
adjusted to adapt to the features of the inputs and outputs.
One of the popular and efficient training algorithms for tra-
ditional neural networks is Back Propagation (BP) [34, 35,
53]. BP uses the chain rule to revise the weights according to
the errors of each prediction during training. However, BP
fails in training deep networks due to a decrease of the error
signal in the propagation through layers [23]. This causes
the training process to get stuck in some saddle points, the
so called Vanishing Gradient Problem [5, 35].

Around 2006, an unsupervised pre-training procedure was
introduced to solve this problem [35]. In a deep neural net-
work, raw data (such as Wikipedia in our case) is first used
to pre-train the layers. The pre-training process is applied to
the weighted matrix between the first two layers w;;, while
keeping other layers “frozen”. The weights w;; between the
first two layers ¢ and j are then adjusted by an optimization
function, which compares the output of the neural network
with the actual answers. Once a local minimum is reached,
w;j is frozen, and the weight matrix between higher layers
wjr is adjusted using the same method. By applying this
greedy algorithm to the deep neural network, a representa-
tive model of the original input data can be obtained [22].

A successful application of the deep learning is image
recognition. A deep Convolutional Neural Network (CNN)
based image recognition system first tries to combine the
neighboring pixels and identify the features (strokes and tex-
ture), and combine them into structures (a tail, an ear, a
face), and finally the meaningful representation (a cat) [33,
35].

CNN based methods have also been widely applied to NLP
tasks such as text classification and sentiment analysis [26,
27, 29, 30]. CNN has been used for embedding character,
morpheme and word level inputs. However, one of the keys

Output Layer

Hidden Layer

Input Layer

Figure 1. The typical structure of a Artificial Neural Net-
work with one hidden layer.

to the success of CNN is the translational, rotational and
scale invariances in image recognition tasks which are not
applicable in NLP tasks. Another popular and successful
model of deep learning in NLP is the Long Short-Term Mem-
ory Recurrent Neural Network (LSTM-RNN) [24]. Unlike
the CNN which is deep in space, the LSTM-RNN is deep
in time. Another successful model is the Tree-structured
Recursive Neural Network (TRNN) [57] which takes advan-
tage of the parsing tree structure of the sentence. These
models were used in our CMW network. A more detailed
description is presented in the next section.

3. CHARACTER-MORPHOLOGY-WORD
NETWORK

In this section, we describe the architecture of our Character-

Morphology-Word Network (CMW). The model is a com-
bined model composed of two deep neural networks (Char-
acter Level and Word Level) and a transition layer (Morpho-
logical Level) in between. In order to present the detailed
description of our CMW Network, it is first necessary to
describe the kinds of deep neural networks that underlie it.
Fig. 2 shows the architecture of a general Neural Network
Language Model [2]. Given a sequence of n words, the first
(n — 1) words are used to predict the n'* word. The first
(n — 1) words in the sequence are input to the projection
layer. In this layer, the one-hot representations of these pre-
vious words are projected into vectors in a continuous space
(word embedding). Then the continuous feature vectors are
concatenated into a big vector and processed by one or more
hidden layers. The final layer, which has the same number
of output neurons as the size of the vocabulary, is the prob-
ability of each word appearing in a natural sentence follow-
ing the first (n — 1) words [2]. In [2], the authors obtained
a trained projection layer by optimizing the output prob-
ability with the training data from the Wikipedia corpus,
which gives the word vector of each word in the vocabulary
(Wikipedia in this case). In order to minimize the predic-
tion errors, the words with similar distribution of successive
words are mapped to similar vectors, so that the input of
layers above the projection layer are similar, and hence the
output (the estimated distribution) is similar to the actual
distribution [2].

A Recurrent Neural Network (RNN) is a special kind of
deep neural network which, instead of laying multiple layers
upon each other to create a deep structure, it is a network
that is “deep in time” [21, 25]. As can be seen in Fig. 3,

Plwj = 1[h;) P(w; =2Jh;) -+ Plw; =ilhy) -+ Plwj =NJh;)

Output Layer
A

’ Hidden Layer ‘
A

| Projection Layer |

[0--0100--0/ 0--010000] - [0100---000]

Wj—n+1 Wj—n+2 Wj—1

Figure 2. The architecture of a general Neural Network
Language Model for word embedding. Note that in a Deep
Neural Network there are many hidden layers (adapted from

2))-

while the step inputs (z = {zo,z1, 22, - , 2, - }) are fed
to the network one by one, the status of hidden neurons
(A={Ao, A1, As, -+, Ay, -+ }) are passed through time and
adjusted according to the input z; and the last hidden sta-
tus A¢—1. And the output (h = {ho, h1,h2, -+ ,he, - }) is
generated form the hidden state A. This gives an RNN the
ability to take an unpredetermined length of input and out-
put which makes it able to handle words and sentences of
different lengths. This is especially useful in NLP tasks.

® ®
E _ ..._.
® ®

Figure 3. Recurrent Neural Network is a deep neural net-
work in time (reproduced with permission from [48]).

® ® 6

A Long Short-term Memory Network (LSTM) is a special
kind of RNN which has an updating rule that is more com-
plex than a simple RNN [18]. In a simple RNN (see Fig.
4), the hidden states and outputs (both h; in this case) are
generated by applying a simple tanh function to the merged
vector of the hidden state of previous step h;—1 and the in-
put of this step x¢. But in an LSTM (see Fig. 5), different
restrictions called “gates” are used to regulate the update
behavior which allows the model to determine which neu-
rons in the hidden layer should be “kept” and which should
be “forgotten” or “updated”.

In an LSTM network called the “Peephole Network” [16],
input x:, output h:—1 and the hidden state C;_; are used to
decide the update neurons. The updating functions can be
seen in Equation 1. The sigmoid function o(z) = H% is a
function with value between (0,1). The inputs of each gate
are weighted and biased vectors. The weights and bias of
each gate are parameters to be learned in the training. By
applying o to the weighted vector, it creates a mask vector
of real numbers in the range (0,1). These mask vectors are
the forget gate f, input gate i and output gate o. Weights
for the gates are Wy, W; and W,, and biases are by, b;,

xl

Figure 4. The updating operations in a neuron of Simple
RNN (reproduced with permission from [48]).

Figure 5. The updating operations in a neuron of LSTM
(reproduced with permission from [48]).

bo, respectively. Then the hidden state Cy—; is first multi-
plied with the forget gate point-wise, so that some of the
neurons are regulated towards zero. Then the input vector
tanh(We - [x¢, ht—1] + bc) is multiplied with the input gate,
then added to the hidden state to get the new C;. Simi-
larly, the output is obtained by applying tanh to the hidden
state, and then going through the output gate. The use
of these states helped the LSTM keep long distance infor-
mation. The application of LSTM to NLP tasks increases
the representability of the Neural Network Language Models
[17].

e =o(Wi |2t he—1,Ci1] + bs)

fo = oWy - x4, hi—1,Ci—1] + by)

ot = o(Wo - [¢, hi1, Ct] + bo) (1)
Cy = ft © Ce—1 +ir © tanh(We - [xe, he—1] + be)

ht = 0¢ ® tanh(Ct)

In our Character-Level Neural Network Language Model
(CLNNLM), we use a Bidirectional Long Short-term Mem-
ory (Bi-LSTM) Network to encode the context of the word
[40]. As shown in Fig. 6, the Bi-LSTM is actually a combi-

nation of two LSTMs which are in different directions. This
means that the complete contextual information is available

Figure 6. The architecture of Bidirectional RNN (repro-
duced with permission from [48]).

at each step, where as in the simple LSTM only information
about the previous context is known at the current step.

As shown in Fig. 7, our model first embeds each char-
acter into a vector and then the vector is put in the Bi-
LSTM to generate the predictions for the next letter in the
same direction. All the weights are trained jointly including
the embedding vectors of each character. The hidden states
carry the information obtained from the previous steps. By
combining the final hidden state in both directions, the em-
bedding of a word is obtained.

Bi-LSTM

Character Lookup Table

Word Embedding

Figure 7. The architecture of our Character-Level Neural
Network Language Model (adapted from [40]).

©000 ©009 ©00Y ©00Y
The red bird sang

Figure 8. The architecture of Tree-Structured Recursive
Neural Network (adapted from [57]).

A TRNN is a recursive neural network on the parsing tree
of a sentence [57] (see Fig. 8). Each node takes inputs only
from its children nodes and feeds the output to its parent
node. This mechanism utilizes the information of sentence
structure to eliminate the long-range dependency or discon-
tinuity problem [57]. The parsing tree can be obtained via
various popular methods. In our model we used the Stanford
Dependency Parser to parse the sentences [9].

The same architecture can be used for word level embed-
dings as well. We only need to replace the characters in the
previous model with words and the embeddings of words
can be obtained directly with the output of the CLNNLM.
However, as mentioned previously, there are discontinuities
in many languages [54], such as “put your red hat on”, “give
the girl over there some help”, “He does not feel tired af-
ter such a long run at all”, where the phrases in bold are
split by other words. In such cases, treating the sentence
in bulk provides better performance than n-gram methods
which only consider the n continuous words [43]. So instead
of using the continuous n-gram as the input of the Word-
Level Neural Network Language Model (WLNNLM), we use

a Tree-Structured Recursive Neural Network (TRNN) to
model the sentences at the word level.

It is also useful to note that the spelling of a word is not a
random sampling over the set of possible characters since the
words are formed with smaller character groups (like etyma,
prefix and suffix) in a more organized way. The probability
distribution of the next letter is actually a measurement of
the cohesiveness between the current and the next letters.
For example, in the case of the word, “preventing”, if the
model is very confident that the next letter after “i” is “n”
and “g”, it indicates that “ing” is possibly a character group
(in this case, a suffix). By mining the patterns of letters in a
word, we find the prefixes and suffixes in English words, and
use them as additional features in sentence understanding
[40, 41, 55]. In order to identify these features, we added an
additional morphological-level layer between the CLNNLM
and WLNNLM which takes the states of each hidden neuron
in the CLNNLM and splits the words into character groups
before feeding them into the WLNNLM.

Fig. 9 shows the architecture of our entire model, the
Character-Morphology-Word (CMW) Network. The sen-
tence is first parsed using the Stanford Dependency Parser
[9] and the parsing tree is fed to the WLNNLM which is a
tree structured neural network. For each word in the parsing
tree, the characters are fed to the CLNNLM, which is a Bi-
LSTM. The Bi-LSTM predicts the probability distribution
of the next character at each step. In the Morphological
Layer, the information entropy of the distribution is cal-
culated which represents the uncertainty of the prediction.
Since the stems appears in words more often statistically,
the uncertainty of the prediction drops within a stem. For
example, in the word “biomineralization”, the model is more
confident that the next letter is “o” after seeing “bi” in the
beginning, but less confident about the next letter after see-
ing “bio” since the stem is complete here and a lot of different
stems may follow this. As can be seen in Fig. 9, we cut the
word when the uncertainty increases (lighter neurons), and
combine the final hidden states of the stem in both direc-
tions into a representation of the stem. The stems are also
organized in a tree-structured way, in which the stem in the
middle is taken as the root of the tree, and all the other
stems are dependents of their neighbors that are closer to
the root, which forms a “V” shape. Then this revised tree
structure is processed using the TRNN of the WLNNLM to
combine the information from the children recursively in the
tree and form the embedding of the whole sentence at the
root of the dependency parsing tree.

4. EXPERIMENTS AND EVALUATION

In this section, we describe the corpus and libraries used
for building our model as well as the evaluations used to test
the performance of our model.

4.1 Environment Setup

Theano is a linear algebra compiler that optimizes symbolically-

specified mathematical computations to produce efficient
low-level implementations [3, 6]. Theano provides a high-
level mathematical description language to define mathe-
matical functions and then compile and automatically dif-
ferentiate the functions with existing libraries. Theano is
currently used as a development toolkit in neural networks,
with many software packages and tools built upon it [60].

Keras is a highly modular neural network library in Python.

It supports both Theano and TensorFlow backends [10]. Its
optimizers were used in our experiment as training functions.

The experiments were run on a Linux server with two Intel
E5-2620 CPUs, 256 GB memory and NVIDIA Tesla Fermi
M2090 ¢cGPUs with 6GB memory and 512 CUDA cores. The
version of CUDA is 6.0. The version of Theano is 0.7.0. And
the version of Keras is 0.2.0.

4.2 Training

Wikipedia [52, 63] is composed of millions of articles in
different languages, making it a useful corpus for language
model training [39]. As of February 2016, the EnglishWiki
has 5,149,619 articles and over 2.6 billion words [61]. The

Wikimedia Foundation provides dumps of the English Wikipedia

almost every month. We used the 2016-07-01 dump of En-
glish Wikipedia.

The copy of Shakespeare’s works used in our training was
obtained via Project Gutenberg [56], which includes 38 plays
written by William Shakespeare (1564 4AS 1616). The cor-
pus has 5,338,964 tokens, 883,331 words and 122,690 lines.

Kiros et al. [31] propose a sentence based training pro-
cedure which uses the current sentence s; to reconstruct
the previous sentence s;—1 and the next sentence s;1 (skip-
thought framework). We used a training procedure similar
to this. However, since it is difficult to reconstruct sentences
using a TRNN, we added an extra softmax layer to the top
of the model during the training process to translate the sen-
tence embedding output by our model into the probability
distribution of words in the previous and next sentences (the
word orders in these sentences are ignored for simplicity).

The 2016-07-01 dump of English Wikipedia training cor-
pus has 59,784,453 sentences. All the sentences that do not
have previous or next sentences in the same paragraph are
discarded. This leaves 26,719,225 valid triples (s;—1, i, Si+1).
We split the triples into training (80%) and validation (20%)
sets. The object function in training is the cross entropy
[51] between the predicted and actual distributions of words.
The optimization algorithm used is Stochastic Gradient De-
scent (SGD) [8]. We used batches of 51,200 triples to train
the model. The total number of batches is 5000 so that the
model is trained on the whole corpus for roughly 10 times.
The Shakespeare corpus only has 57,881 valid triples so we
used batches of 128 instead of 51,200 while kept other setups
the same as the Wikipedia model.

The models in Levy et al. [37] were also trained on the
Wikipedia corpus. The versions of Wikipedia used in [37]
and our experiments may be different. Furthermore, instead
of the 5 word context window which is used in Levy et al.
[37], the context used for training our CMW network is the 3
sentences context according to the skip-thought framework
in Kiros et al. [31]. Due to the limitation of space, in Levy et
al. [37] only words appearing 100 times or more are included
in the vocabulary which includes 189,553 words. This may
result in the Out-Of-Vocabulary (OOV) problem in their
model. However, it is not an issue in our character-based
network since the total number of characters appearing in
the corpus is 205. For comparison reasons, we embedded
the words into a 600-dimensional space which is the same as
the embedding model in Levy et al. [37].

In both the models in Levy et al. [37] and our Wikipedia
CMW network, the functional and meta information in the
training corpus such as hyperlinks, titles, section names and
references has been removed, but some of the prepossessing

WLNNLM

i omine o rall,i z a

" SRR

process

produce

Figure 9. The architecture of our whole CMW network model.

35 - - - -
— Training
— Validation
3.0
o)
g
225
2
5
2
w
@
o
S 2.0
1.5
1.0
0 1000 2000 3000 4000 5000

Batch

Figure 10. The cross entropy over training batches.

in [37] such as lowercasing all characters & filtering non-
alphanumeric tokens are not used in our model. Because our
CMW model uses character level input, we wanted to keep
the modifications on the original corpus to the minimum.
Preserving the case and special tokens such as punctuation
in the training corpus can help the model learn lexical phe-
nomenons such as proper names so that it can distinguish
between “Smith” and “smith”, but this might also negatively
affect the performance by mapping “The” in the beginning
of a sentence and “the” in the middle of a sentence to dif-
ferent words. During the training process, Levy et al. [37]
also used negative sampling to regularize the model while we
used the skip-thought framework in Kiros et al. [31] which
did not utilize this trick. These differences might negatively
impact the performance of the CMW model on the word
based tests. Compared to the neural network based embed-
ding model in [37], our CM'W network is more complex and
has larger number of parameters, thus requires more time for
training. We had hoped this would help our model achieve
better results but as seen below we see better results in only
one domain and comparable results in the others.

The change of training and validation cross entropies at

each batch during the training on Wikipedia can be seen in
Fig. 10. The lower cross entropy basically means that the
predictions of the model matches the training cases better.
The training functions from Keras library was used in our
training process which has a known issue of reporting lower
loss in the validation sets than training sets due to differ-
ent evaluation methods[28]. It can be seen that the model
quickly converged during the first 500 batches and stayed
fluctuating during the rest of training. This may suggest
that the model is not taking advantage of the whole train-
ing corpus. The reason for this could be that either the
corpus is too big for the model, or the training algorithm is
not optimizing the model effectively. We tried several differ-
ent training algorithms such as AdaGrad [13] and AdaDelta
[62]. The trainings using these algorithms also converged
early around 500-1000 batches. As a result, we believe that
the model is well trained using the corpus.

4.3 Word Embedding

One of the benefits of using a character level model for
word embedding is that it can process any words based on
their spelling, even if the word has never appeared in the vo-
cabulary during training, the so-called the out-of-vocabulary
words. Words such as the names of people, places and an-
imals are usually very rare while following some patterns,
such as “Dogville”. By using character level inputs, we
can identify such patterns and use it for embedding unseen
words.

Table 1: Most similar words of Out-Of-Vocabulary tests

Test Word
goood misinformativeness Xiatoujiao Minemoto
Similar good infho‘rmativen.ess Shat.(.)u.j .iao Mi.nz'imoto
Words Good misinformation Zhujiajiao ~ Minimoto
great Disinformation Zhoushan Fijimoto

As can be seen in Tab. 1, we coined four testing words
that are not seen in the training corpus. We used our word
embedding model to embed these OOV words using its char-
acters, and compared the word vectors with every word in
the corpus vocabulary. The similarity between the test and
vocabulary word vectors (v3, vy) are measured by the cosine

distance cos(v:, V). The most similar three words for each
test are listed in the table. The result shows that our model
can handle the character-level input of unseen words, and
embed it into the word embedding space based on spelling
similarity. In the case of “goood”, it correctly linked it to
the correct spelling “good” using character level information.
And for “misinformativeness” which is a compositional word,
it seems that our model correctly identified the roots “mis”,
“informat”, “ive”, “ness” which are matched or replaced in
the three most similar words returned by the model. And
for the Chinese and Japanese names, it can be clearly seen
that the returned similar words are of similar forms.

4.3.1 Word Similarity

Our word embedding result can be compared with other
methods using the Microsoft Research (MSR) data set [44]
and the Google data set [42]. We used these data sets to
compare our model to two models presented in [37].

The Word Similarity data sets by Microsoft and Google
are word pair data sets with similarity scores between each
pair assigned by humans. For each left side word a, several
right side words b1 - - - b, are compared with a and the sim-
ilarity scores zi ---x, are assigned where x; measures the
similarity between a and b;. In order to evaluate the word
embedding result, the similarity between word a and b; is
given by the cosine similarity between the word vectors wy
and wp; of the words, i.e. y(a,b;) = Wy X W /||wWa| X ||we:l|.
The accuracy of the word embedding result can be mea-
sured using the Spearman’s correlation between the orders
of the output similarity scores and the human ratings. The
state-of-the-art methods yield 60.5% to 69.1% accuracy [36].

The MSR and Google data sets are two analogy datasets,
containing questions in the form of “a is to a* as b is to b*”
[42]. In tests, a, a* and b are given to the system, and the
result output by the system is compared with b*. The MSR
data set contains 8000 syntactic analogy questions, such as
“good is to best as smart is to smartest”, and the Google data
set contains 19,544 such questions, about half of which are
syntactic questions and the other half are semantic questions
such as capital of countries (“Paris is to France as Tokyo is to
Japan”) [42]. The analogy questions can be answered with
Levy and Goldberg’s similarity multiplication method [44]
which is an analogy recovery algorithm as follows,

b - (a* —a+b)

argmax cos(b',a* —a+b) =
1]] - fla* — a+ b]|

b’ eV \(a,a*,b)

(2)

where b* is the correct answer, b/ is the answer returned by
the system, Vi is the vocabulary, € is an infinitesimal which
is used to avoid zero in the denominator. The accuracy
rate for the analogy questions is defined as the percentage
of questions for which the argmaz result was the correct
answer; that is, where b/ = b* [37]. State-of-the-art methods
yield 14.55% to 99.41% accuracy, varying between different
domains [37]. The average accuracy is 59. 09% on the MSR
data set, and 68.24% on the Google data set [37].

Two models are used in [37], a neural network based em-
bedding model and a matrix based explicit model. The em-
bedding model is based on the word vectors obtained using
word2vec as described in [42, 43]. The model is a single hid-
den layer feed forward neural network that takes the word
at the center as the input and predicts its context words
within the distance of 2 (¢. e. 5 words in total). Then the

word embedding is obtained from the neural network. Some
tricks such as negative sampling are used in [37] to make the
result more robust.

The explicit model is a matrix based model. The value
of each element is the positive pointwise mutual informa-
tion between a pair of words [11, 12, 59] based on a co-
occurrence matrix of length 4 (2 words on each side), which
is basically the maximum of zero and the mutual informa-
tion between the pair of words. This sparse matrix of size
[[Viw || x 4 ||Viv ||offers the word embeddings used in the word
similarity task using the argmax formula (Formula 2).

Tab. 2 shows the results of our test on the Google & MSR
datasets. We compared our result to the two models by Levy
et al. [37]. We also recalculated the number of correct and
incorrect samples in [37] using the accuracy and the number
of samples in each category.

As can be seen from the tables, our model performs com-
paratively well to [37]. The overall performance is around
11% worse than the two models of Levy et al. [37]. However,
the performance of our method on the Google dataset is very
close to Levy et al. [37], while the performance on MSR
dataset is considerably worse. For the grami-adjective-to-
adverb, our model performs better than the two Levy mod-
els. It might be that our model has more parameters and
could get stuck in local minimum or overfit, or the current
method used in training is not sufficient to find an optimal
result in the search space. Since we have tried several dif-
ferent optimization algorithms including SGD [8], AdaGrad
[13] and AdaDelta [62] and the object functions always con-
verge early in the training process, we think that might not
be the main issue in this case. It is also possible that the size
of neurons in each layer are not big enough for the model,
which has reduced the ability of our model to represent the
complexity of the language. However, the dimension of the
character-level is restricted to 600 to be the same as [37] for
comparison reasons, but we may use a higher dimension and
use dimensional reducing methods such as Principle Com-
ponent Analysis to resize to 600. This could be explored in
the future.

4.3.2 Automatic Text Generation

A very popular demo for showing the representability of
neural network language models is automatic text genera-
tion [20]. Although there is no public gold standard for
evaluating the output text, the fluency and intelligibility of
the auto-generated texts are often viewed as a demonstra-
tion of the generalizability of the language model. . We
automatically generated text using our model trained on
two different corpora, Wikipedia [52, 63] and Shakespeare’s
works [56] using a random initial hidden state.

We used our model to generate the text automatically
with a random initial hidden state. First we generate a
seed sentence from the training corpus which ends at the
first space after the 40®" character. The seed is fed into
the CLNNLM model to initialize the hidden states. The
characters after the seed are randomly picked according to
the probability distribution predicted by the CLNNLM, and
fed back to the CLNNLM to update the hidden states and
generate the next character. We generated 100 samples of
450 characters for each of the models which have 12,781
words in total. The following are two samples of generated
text:

Wikipedia: Zanzibar’s economy is based primarily on a few

Table 2: Word similarity results comparing with related researches

. Lev, Difference

Domain Embedding ' Explicit “M" N Eribedding Explicit
capital-common-countries 90.51% 99.41% 89.71% -0.80% -9.70%

capital-world 77.61% 92.73% 75.23% -2.38% -17.50%

currency 56.95% 64.69% 50.20% -6.75% -14.49%
city-in-state 14.55% 10.53% 6.32% -8.23% -4.21%

family 76.48% 60.08% 65.61% -10.87% 5.53%

gram1-adjective-to-adverb 24.29% 14.01% 33.22% 8.93% 19.21%
gram2-opposite 37.07% 28.94% 31.77% -5.30% 2.83%

Google | gram3-comparative 86.11% 77.85% 65.36% -20.75% -12.49%

gram4-superlative 56.72% 63.45% 24.15% -32.57% -39.30%
gramb-present-participle 63.35% 65.06% 57.97% -5.38% -7.09%
gram6-nationality-adjective 89.37% 90.56% 88.53% -0.84% -2.03%
gram7-past-tense 65.83% 48.85% 47.16% -18.67% -1.69%
gram8-plural 72.15% 76.05% 70.76% -1.39% -5.29%

gram9-plural-verbs 71.15% 55.75% 67.14% -4.01% 11.39%

average 59.09% 56.82% 56.26% -2.83% -0.56%

adjectives 45.88% 56.46% 42.47% -3.41% -13.99%

MSR nouns 56.96% 63.07% 50.35% -6.61% -12.72%
verbs 69.90% 52.97% 50.13% -19.77% -2.84%

average 66.71% 68.24% 47.31% -19.40% -20.93%

Average 64.66% 65.17% 53.66% -11.00% -11.51%

of the recent notable control of his tribes have been proposed
to be stored in the term in the candidate of the Catholic in
the Medical and Stephens (1984), and the infraction of the
Member of the Slave and Western Charles A. Bottle, Cana-
dian form of since 1961 by the United States and proposed
with the United States Art and Street for the Assembly of
Consider Stone Bartare.

Shakespeare: Despite of wrinkles this thy golden tinow you
stand not your presence and less in mine eyes are so and
born and her oy the some state of HESTINGS and TROILUS,
and MARCUS, with the master of the Paris, that I should be
for the stone, the content, to the most sorrow in the behold
of this bloody power and the strength and to be my son which
when he shall be here and send the widow of the friends of
the King.

Of the 5824 words in the randomly generated Wikipedia
sample, only 171 of them did not appeare in the corpus.
Of the 6057 words in the randomly generated Shakespeare
sample, only 132 of them did not appeare in the corpus.
Many of these out-of-vocabulary words are capitalized and
appear as proper names such as Bartare. Only less than
2.37% of the character-by-character generated words are out
of the training corpus. We also imported the automatically
generated text into Word. The Word Spell Checker reports
534 misspelled words, making up 4.18% of the generated
text. Considering it is generated with our character-level
model one character by one character, it is interesting that
most of the words produced are spelled correctly. Another
thing to note is that for each model trained with different
corpora, the writing style is different, which captures the
way each author writes in the training text.

5. CONCLUSIONS AND FUTURE WORK

In this research we proposed a CMW neural network lan-
guage model which takes character level input and encodes
the sentences into vectors. The network is composed of two
deep neural networks and a morphological layer in between

which uses information obtained from the character level
network to break words into stems. We trained the CMW
network using the Wikipedia corpus and produced a set of
vectors mapping English words into a continuous space. The
vectors can be used in various scenarios in NLP, such as
machine translation, knowledge extraction, information re-
trieval, and dialogue systems.

We demonstrated our model using word similarity tasks
and automatic text generation. We compared our word em-
bedding results with two previous models using word sim-
ilarity tasks and achieved some comparable performance.
Potential problems that may be affecting the performance
of our model include inadequate training data, inadequate
training mechanism to finding a satisfying convergence. It is
also possible that some of the word similarity tasks require
knowledge beyond the character and word levels, such as
the country-currency pairs in the Google dataset. A knowl-
edge system might answer such questions better and obtain
higher accuracies. We believe this could be the most possible
reason.

In the future, the model can be modified to utilize other
training corpora, such as using the words and definitions
from the dictionary as the output and input of the network.
The current method of splitting words into stems was based
on the probability distribution predicted by the CLNNLM.
One area for future exploration is to study whether training
or pretraining the CLNNLM with morphological datasets
could enhance the performance of the model.

6. ACKNOWLEDGMENTS

Our thanks to Frank Rudzicz for feedback on this work.
The research was partially funding by the GRAND NCE.

7. REFERENCES
[1] J. Andreas and D. Klein. How much do word
embeddings encode about syntax. In Proceedings of
ACL, 2014.

2]

[10]

[11]

[12]

[17]

E. Arisoy, T. N. Sainath, B. Kingsbury, and

B. Ramabhadran. Deep neural network language
models. In Proceedings of the NAACL-HLT 2012
Workshop: Will We Ever Really Replace the N-gram
Model? On the Future of Language Modeling for HLT,
pages 20—28. Association for Computational
Linguistics, 2012.

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra,

I. Goodfellow, A. Bergeron, N. Bouchard,

D. Warde-Farley, and Y. Bengio. Theano: new
features and speed improvements. arXiv preprint
arXi:1211.5590, 2012.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin.
A neural probabilistic language model. The Journal of
Machine Learning Research, 3:1137-1155, 2003.

Y. Bengio, P. Simard, and P. Frasconi. Learning
long-term dependencies with gradient descent is
difficult. Neural Networks, IEEE Transactions on,
5(2):157-166, 1994.

J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin,

R. Pascanu, O. Delalleau, G. Desjardins,

D. Warde-Farley, 1. Goodfellow, A. Bergeron, et al.
Theano: Deep learning on GPUs with python. In
NIPS 2011, BigLearning Workshop, Granada, Spain,
2011.

P. Bojanowski, A. Joulin, and T. Mikolov. Alternative
structures for character-level rnns. arXiv preprint
arXiv:1511.06303, 2015.

L. Bottou. Large-scale machine learning with
stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177-186. Springer, 2010.

D. Chen and C. Manning. A fast and accurate
dependency parser using neural networks. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 740-750, Doha, Qatar, October 2014.
Association for Computational Linguistics.

F. Chollet. keras. https://github.com/fchollet /keras,
2015.

K. W. Church and P. Hanks. Word association norms,
mutual information, and lexicography. Computational
linguistics, 16(1):22-29, 1990.

I. Dagan, F. Pereira, and L. Lee. Similarity-based
estimation of word cooccurrence probabilities. In
Proceedings of the 32nd annual meeting on Association
for Computational Linguistics, pages 272—-278.
Association for Computational Linguistics, 1994.

J. Duchi, E. Hazan, and Y. Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research,
12(Jul):2121-2159, 2011.

W. Finder. 3 letter words.
http://www.wordfind.com/3-letter-words/.

J. R. Finkel, A. Kleeman, and C. D. Manning.
Efficient, feature-based, conditional random field
parsing. In ACL, volume 46, pages 959-967, 2008.

F. A. Gers and J. Schmidhuber. Recurrent nets that
time and count. In Neural Networks, 2000. IJCNN
2000, Proceedings of the IEEE-INNS-ENNS
International Joint Conference on, volume 3, pages
189-194. TEEE, 2000.

F. A. Gers and J. Schmidhuber. LSTM recurrent

(18]

(19]

20]

21]

(22]

23]

(24]

(25]

[26]

27]

28]

29]

(30]

(31]

32]

33]

(34]

networks learn simple context-free and
context-sensitive languages. Neural Networks, IEEE
Transactions on, 12(6):1333-1340, 2001.

F. A. Gers, J. Schmidhuber, and F. Cummins.
Learning to forget: Continual prediction with lstm.
Neural computation, 12(10):2451-2471, 2000.

Y. Goldberg and O. Levy. word2vec explained:
Deriving Mikolov et al.’s negative-sampling
word-embedding method. arXiv preprint
arXiv:1402.3722, 2014.

A. Graves. Generating sequences with recurrent neural
networks. arXiv preprint arXiv:1308.0850, 2013.

A. Graves, A.-r. Mohamed, and G. Hinton. Speech
recognition with deep recurrent neural networks. In
Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on, pages
6645-6649. IEEE, 2013.

G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast
learning algorithm for deep belief nets. Neural
computation, 18(7):1527-1554, 2006.

S. Hochreiter. The vanishing gradient problem during
learning recurrent neural nets and problem solutions.
International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(02):107-116, 1998.

Z. Huang, W. Xu, and K. Yu. Bidirectional lstm-crf
models for sequence tagging. arXiv preprint
arXiv:1508.01991, 2015.

O. Irsoy and C. Cardie. Deep recursive neural
networks for compositionality in language. In
Advances in Neural Information Processing Systems,
pages 2096-2104, 2014.

R. Johnson and T. Zhang. Semi-supervised
convolutional neural networks for text categorization
via region embedding. In Advances in neural
information processing systems, pages 919-927, 2015.
N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A
convolutional neural network for modelling sentences.
arXiv preprint arXiv:1404.2188, 2014.

Keras. Why is the training loss much higher than the
testing loss? https://keras.io/getting-started /faq/why-
is-the-training-loss-much-higher-than-the-testing-loss,
2016.

Y. Kim. Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882, 2014.
Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush.
Character-aware neural language models. arXiv
preprint arXiv:1508.06615, 2015.

R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel,

R. Urtasun, A. Torralba, and S. Fidler. Skip-thought
vectors. In Advances in neural information processing
systems, pages 3294-3302, 2015.

T. Koo, X. Carreras, and M. Collins. Simple
semi-supervised dependency parsing. 2008.

Q. V. Le. Building high-level features using large scale
unsupervised learning. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International
Conference on, pages 8595-8598. IEEE, 2013.

B. B. Le Cun, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Handwritten
digit recognition with a back-propagation network. In
Advances in neural information processing systems.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Citeseer, 1990.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning.
Nature, 521(7553):436-444, 2015.

O. Levy and Y. Goldberg. Neural word embedding as
implicit matrix factorization. In Advances in Neural
Information Processing Systems, pages 21772185,
2014.

O. Levy, Y. Goldberg, and I. Ramat-Gan. Linguistic
regularities in sparse and explicit word
representations. CoNLL-201/, page 171, 2014.

Y. Li, J. Liu, Q. Bao, W. Xu, R. Sadiq, and Y. Deng.
A new method of mapping relations from data based
on artificial neural network. International Journal of
System Assurance Engineering and Management,
5(4):544-553, 2014.

W. Ling, C. Dyer, A. Black, and I. Trancoso. Two/too
simple adaptations of word2vec for syntax problems.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies. Association for Computational
Linguistics, 2015.

W. Ling, T. Luis, L. Marujo, R. F. Astudillo, S. Amir,
C. Dyer, A. W. Black, and I. Trancoso. Finding
function in form: Compositional character models for
open vocabulary word representation. arXiv preprint
arXiw:1508.02096, 2015.

M.-T. Luong, R. Socher, and C. D. Manning. Better
word representations with recursive neural networks
for morphology. CoNLL-2013, 104, 2013.

T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiw:1301.3781, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in
neural information processing systems, pages
3111-3119, 2013.

T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic
regularities in continuous space word representations.
In HLT-NAACL, pages 746-751, 2013.

S. Miller, J. Guinness, and A. Zamanian. Name
tagging with word clusters and discriminative training.
In HLT-NAACL, volume 4, pages 337-342, 2004.

A. Mnih and G. Hinton. Three new graphical models
for statistical language modelling. In Proceedings of
the 24th international conference on Machine learning,
pages 641-648. ACM, 2007.

A. Mnih and G. E. Hinton. A scalable hierarchical
distributed language model. In Advances in neural
information processing systems, pages 1081-1088,
2009.

C. Olah. Understanding Istm networks.
http://colah.github.io/posts/2015-08-Understanding-
LSTMs/,

2015.

S. Oreski, D. Oreski, and G. Oreski. Hybrid system
with genetic algorithm and artificial neural networks
and its application to retail credit risk assessment.
Expert Systems with Applications, 39(16):12605 —
12617, 2012.

[50] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. Proceedings of
the Empiricial Methods in Natural Language
Processing (EMNLP 2014), 12:1532-1543, 2014.

[51] R. Y. Rubinstein and D. P. Kroese. The cross-entropy
method: a unified approach to combinatorial
optimization, Monte-Carlo simulation and machine
learning. Springer Science & Business Media, 2013.

[52] M. Ruiz-Casado, E. Alfonseca, and P. Castells.
Automatic assignment of wikipedia encyclopedic
entries to wordnet synsets. In International Atlantic
Web Intelligence Conference, pages 380-386. Springer,
2005.

[53] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error
propagation. Technical report, DTIC Document, 1985.

[54] L. M. Santelmann and P. W. Jusczyk. Sensitivity to
discontinuous dependencies in language learners:
Evidence for limitations in processing space.
Cognition, 69(2):105-134, 1998.

[65] C. D. Santos and B. Zadrozny. Learning
character-level representations for part-of-speech
tagging. In Proceedings of the 81st International
Conference on Machine Learning (ICML-14), pages
1818-1826, 2014.

[56] W. Shakespeare. The complete works of william
shakespeare. In The Complete Works of William
Shakespeare. Project Gutenberg EBook, 2011.

[57] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng.
Parsing natural scenes and natural language with
recursive neural networks. In Proceedings of the 28th
international conference on machine learning
(ICML-11), pages 129-136, 2011.

[58] O. Téckstrom, R. McDonald, and J. Uszkoreit.
Cross-lingual word clusters for direct transfer of
linguistic structure. In Proceedings of the 2012
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 477-487. Association for
Computational Linguistics, 2012.

[59] P. D. Turney. Mining the web for synonyms: Pmi-ir
versus Isa on toefl. In P. De Raedt, Lucand Flach,
editor, Machine Learning: ECML 2001: 12th
FEuropean Conference on Machine Learning Freiburg,
Germany, September 5-7, 2001Proceedings, pages
491-502. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2001.

[60] B. van Merriénboer, D. Bahdanau, V. Dumoulin,

D. Serdyuk, D. Warde-Farley, J. Chorowski, and

Y. Bengio. Blocks and fuel: Frameworks for deep

learning. arXiv preprint arXiv:1506.00619, 2015.
[61] Wikipedia. Wikipedia:size comparisons.

https://en.wikipedia.org/wiki/Wikipedia:Size_comparisons.

[62] M. D. Zeiler. Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701, 2012.

[63] T. Zesch, I. Gurevych, and M. Miihlhduser. Analyzing
and accessing wikipedia as a lexical semantic resource.
Data Structures for Linguistic Resources and
Applications, pages 197-205, 2007.

